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AIIItnct-A hereditary type complementary power potential is postulated which permits definition
of the strain rate tensor in terms of the history and current magnitude of a certain combination of
stress and stress deviator components. The strain rate tcosor is decomposed into e1utic and viscous
portions, the latter being further separated into reversible and irreversible parts with the reversible
portion being represented by Volterra type integrals. For a material obeying Norton's power law,
the three-dimensional non-linear constitutive equations are derived in terms of two elutic constants
and five viscous material parameters which may be determined from erccp tests. These equations
are applied to the derivation of general non-linear viscoclutic constitutive relations for a plate
clement which, in tum, are used to solve the cylindrical time-deftection problem of a long simply
supported ice plate subjected to in-plane compressive forces applied along the longitudinal edges.
The governing equations are solved numerically, using an incremcotal approach. An approximate
method for the effective numerical treatment of problems involving hereditary type constitutive
relations is discussed in detail.

1. INTRODUCTION

Data from uniaxial creep tests conducted at temperatures sufficiently below the melting
temperature (T<0.6T,J and at stress levels below the yield stress, (Jy, of the material
indicate that typical creep curves for common structural materials consist of three different
segments, namely: (i) the primary creep stage, with decreasing viscous strain rate; (ii) the
secondary creep stage with a constant strain rate; and (iii) the tertiary or accelerating creep
stage during which the strain rate is increasing until failure occurs. From the point of view
of the designer, the first two stages of creep may be considered to be "safe", provided the
design incorporates certain measures so as to ensure that the response of aD elements and
portions of the structure remains within these first two stages during the operational
lifetime of the structure. In many cases the primary creep stage is relatively short and can
be omitted in comparison with the steady creep phase, thereby simplifying the analysis
considerably. Such "steady-state" creep theories, in which the creep rate is a function only
of stress level, have proven to be very useful in the treatment of even relatively complex
structures[1-4]. Clearly, there are materials for which such theories are not applicable.

In this paper we present a hereditary type constitutive model which describes the
primary and secondary creep stages and at the same time is tractable in numerical
treatments. In applying this constitutive theory, we use ice as an example. This material
is relatively close to its melting point and consequently can tolerate only a low stress level
if its response is to remain within the first two stages of creep. Extensive experimental data
reported, for example, in Refs [5-7], suggests that a weD-defined steady creep stage along
the creep curve for ice exists for stress levels below (J < -0.1 T + 0.2, where T denotes the
temperature in °C and (J is expressed in MPa. Such data also shows that the tensile and
compressive behaviour of this material under such relatively low stress/strain levels is
similar. However, even for such "low" stress levels, the primary "hardening" creep phase
is relatively long and can have a significant effect on the overall behaviour of the structure.
In fact, this initial or first creep phase is usually handled on the basis of so-called "strain
hardening" or "time hardening" theories which have been modelled after theories from

t The results presented here were obtained in the course of research sponsored by the Natural Sciences and
Engineering Research Council of Canada, Grant No. A-2736.
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plasticity[I-4], the characteristic feature of which is the fact that separate constitutive laws
are postulated for loading and unloading and that any «recovery" is excluded. Some
interesting variations or alternatives to these types of theories are presented in Ref. [8]
where the hardening parameters are assumed to depend on maximum pre-strain. Similarly,
in Ref. [9] the hardening parameters are assumed to be functions of the maximum pre
stress. As opposed to these theories, hereditary type laws are analytical in the sense that
a single expression handles both positive and negative stress changes as well as recovery
phenomena. In linearized form, they are widely used to define material behaviour for
various plastics, as well as for low stress level response of ice, concrete and other non
metallic materials.

In this paper we limit our considerations to the first two stages of creep and discuss
a non-linear hereditary constitutive law for non-ageing materials with fading memory. In
particular, we postulate the existence of a complementary power potential, the elastic
portion of which depends on the first and second invariants of the stress rate tensor while
the viscous portion is a function only of the history and the current magnitude of the
second invariant of the stress deviator tensor. Thus the usual assumption concerning
incompressibility due to viscous processes, a phenomenon which is supported by a large
body of experimental data, is preserved. The resulting constitutive law shows the strain
rate tensor to consist of three portions:

(1) the elastic part which depends on the stress rate;
(2) the reversible viscous creep rate portion in the form of hereditary Volterra type

integrals; and
(3) the irreversible viscous part being a function of the current stress level.

As an example, we particularize the general constitutive relations derived here to a material
obeying Norton's power creep law. The visco-elastic properties for such materials are
defined by the standard elastic constants and five additional viscous parameters, to be
determined from creep test data. The feasibility of such a hypothesis, namely, that all
viscoelastic parameters can be determined from creep tests in uniaxial behaviour, was
shown for ice in Ref. [to].

The critical point in applying the proposed constitutive theory is in the numerical
treatment of the complex derivatives of the Volterra integrals, representing the hardening
rule of the viscous process. In order to make the numerical solution of these integrals
tractable, an approximate method, introduced in Refs [10,11] for the uniaxial case, and
utilizing non-linear spring-dashpot elements, is generalized here for the multiaxial
formulation.

Finally, the theory developed is used to analyse the time-deflection behaviour of long
ice plates undergoing cylindrical bending and subjected to uniform in-plane compressive
loads applied along the two longitudinal edges.

2. UNIAXIAL CONSTITUTIVE LAWS FOR NON-AGEING MATERIALS WITH

FADING MEMORY

For a uniaxial stress state a general constitutive law for viscoelastic materials at a
constant temperature and with memory may be written in the form[12]

t = i +IF[O'(r), t] dr (1)

where 0' and t denote stress and strain, respectively, E is Young's modulus defining the
linearly elastic instantaneous response while F is a function describing the viscous non
linear properties of the material. The lower and upper limits of the integral refer to the
"virgin" state of the material and the current time, respectively. A somewhat less general
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form of this relation, but still incorporating stress-dependent "fading memory" and ageing
characteristics, is given by

s = i +rF[a(t),L(t - t),g(t)]dt. (2)

If the functions L(t - t) and g(t) become stress independent, the constitutive relation
becomes

s = ~ + IF[a(t)]'L(t - t)'g(t)dt
E 0

(3)

indicating that L(t) and g(t) are characteristic properties of the material independent of
stress level.

A final restriction, by which ageing is excluded, leads to[l]

s = i +rF[a(t)]L(t - t)dt (4)

a relation describing the kind of material which is to be discussed in this paper. Clearly,
F must be an odd function of stress. More general forms of non-linear hereditary strain
stress relations are discussed in Ref. [12] without specific applications.

The creep rate function, L(t), can be determined, at least in theory, from creep test
data by substituting a = ao = const. in eqn (4) to obtain

1 dslL(t)=_·- .
F(a) dt .,Z"o

(5)

For standard creep curves, exhibiting well-defined primary (hardening) and secondary
(steady) creep phases, L(t) may be decomposed into two parts as

(6)

in which AI and A2 are material constants associated with the first and second stages of
creep, respectively, while .At) denotes a material function describing the hardening process
during the primary creep phase. For convenience, one might normalize this function such
that.AO) = 1.0, from which value it decreases with time (dj/dt < 0). For a well-defined steady
creep stage, we further note that .At) -. 0 for t - 00. Note that in writing eqn (6), the
discussion, henceforth, is restricted to the first two stages of creep.

Substituting eqn (6) into eqn (4), the uniaxial strain-stress relation for this class of
materials is recast in the form

s =i + A 1IF[t(t)]j(t - t)dt + A 2rF[a(t)] dt

from which the strain rate, &, is obtained as

i =~ + A 1 :tI F[a(t)]j(t - t)dt + A2 F[a(t)]

(7)

(8)

a relation indicating that within the elastic response, strain rate depends on the stress rate
while for the viscous portion of the response the effects of current stress and stress history

SAS 2J:2-G
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are separated into two terms. As will be shown in the sequel, the second term in eqn (8)
is associated with the primary (hardening) creep and is "reversible" in nature while the last
term in this expression defines the "irreversible" creep resulting from the secondary (steady)
creep stage.

The expression for strain rate, eqn (8), can formally be obtained from a complementary
power potential, W(I1), defined as

W(a) =reda; .... ... i; = ~~. (9)

For the particular class of material and the uniaxial case considered here, this potential is
written in the form

where

d[U2
] d rW(a) = dt 2E + At dt J

o
F[u(r)] 'j(t - r)dr + A 2F[u(t)]

F[a] =fF[u] dO".

(10)

This brief review of constitutive relations for the uniaxial case was presented in order
to facilitate the generalization of such relations to multiaxial states.

3. A MULTIAXIAL CONSTITUTIVE LAW FOR MATERIALS WITH FADING MEMORY

In analogy with eqn (91 postulate the existence of a complementary power potential
for a three-dimensional state of stress and strain in the form

(11 )

in which aO denotes a current state of stress and from which one immediately obtains the
constitutive law in the form

(I2l

Analogous complementary potentials, referred to as "creep potentials", were used in Refs
[1,9] to formulate various creep theories, some ofwhich were mentioned in the Introduction.
Potentials expressed as functions of the strain rate tensor were discussed and used in Refs
[8,13].

As for the uniaxial case (see eqn (l0», the complementary power potential, W(l1ij), is
assumed to consist of three parts: the first term, being related to the elastic response; the
second and third terms defining reversible and irreversible creep, respectively. Invariance
requirements of constitutive theory suggest that this power potential should be a function
only of the three invariants of the stress tensor. As a consequence, and as a result of
restricting our discussion to the linearly elastic domain, the term responsible for the elastic
response is assumed to be a function of the first stress (11m) and second stress deviator (S)
invariants, while the viscous terms are functions only of the second invariant of the stress
deviator. Note that the effect of the third invariant is neglected, which is a common
assumption in constitutive theory. The physical significance of these assumed functional
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restrictions implies material behaviour, namely incompressibility due to viscous effects,
which is wen supported by experimental evidence and is widely accepted in theoretical
analyses. With these restrictions, the power potential for this class of materials is written
in the form

(13)

in which jO[S(t)] is the same function as that used in eqn (10), K and G denote the elastic
bulk modulus and shear modulus, respectively, given by

EK- .
- 3(1 - 2J.t)'

and where p. is Poisson's ratio, and am and S are defined in the usual manner by

Using the relation given by eqn (12), we obtain the strain rate in the form

(14)

in the derivation of which use was made of the relations

as 3 s··_ = _:!L.
oa;j 2 S

Since Su ::::: 0, the rate of dilatation, tkk , is written as

(15)

which confirms the volume change to be "creep independent".
For the sake of notational convenience denote the viscous portion of the strain rate

tensor by tij, given by

where

3 F(S)
§··=-s··-

'J 2 IJ S

(16)

(17)

and where t~J and tfJ denote the "recoverable" (reversible) and "permanent" (irreversible)
portions of the viscous strain rate, respectively. For the linear case, F(S) = Sand eqn (14)
reduces to the standard hereditary multiaxial constitutive law as given, for example, in
Refs [I, 15J.
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In dealing with plates and shells, a plane stress state is assumed for which (]33 = 0
and as a result of which eqn (14) is rewritten in the form

(18a)

(18b)

(18c)

in which £:" £:3 and £33 are defined by eqn (16) with sij replaced by s"" S"3 and S33'
respectively, and where

(19a)

(19b,c)

The inverse relations for this plane stress case are obtained as

(20a)

in which

(20b)

and where

(2Oc)

(2Od)

Note that eqns (20) have effectively decomposed the total stress rate a", into an elastic,
a:" and a "viscous corrective" (a:,) term, in the form

(21a)

where

(21 b)

(21c)
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For the case of a uniaxial stress state, say 0'11 :F 0, with all other O'ij =: 0, and S =: 0'11'

S11 =~0'11' S22 =S33 = -!0'11' the following relations are obtained from eqns (14)
3 3

(22a)

where £11 follows from eqn (16) with gij replaced by gil given by

(22b)

In directions transverse to that of 0'11 we also obtain from eqn (14)

(23)

Note that relation (22a) is identical to eqn (8). expressed only in different notation.
Equation (23) allows determination of the viscoelastic Poisson's ratio in the form

(24)

Since

_1_ r£11[O'11(t)]dr ~ 0 (recallthatF(-O') =: -F(O'»
0'11 Jo

one can show that

forO ~ t < 00 (25)

indicating that the viscoelastic process never really becomes fully incompressible.
The equations presented so far are tractable provided the reversible portion of the

creep rate, represented by the derivative of a Volterra type integral, can be determined.
For example, when a structure is subjected to a constant external load, the stress
components may also be constant or almost constant in time. For such cases, the creep
rate is written as

(26)

However, for many statically indeterminate structures as well as in stability problems,
despite constant external load, the stress levels vary temporally. Therefore, eqn (16) has to
be used which turns out to be very cumbersome in numerical treatments. For this reason,
eqn (26) is often assumed to hold even for stress states varying in time and an analogous
relation is written as

(21)
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This assumption is identical to the corresponding assumption used in the uniaxial case
and referred to in the literature as Shanley's hypothesis[lO, 11]. As was shown in Ref. [l1J
such an approximation can lead to significant discrepancies as compared with results
obtained from solutions using the proper definition for creep rate, eqn (16).

In the sequel a method will be presented which will allow straight-forward treatment
of the functions eij for a material obeying Norton's power creep law.

4. MULTIAXIAL CONSTITUTIVE RELATIONS FOR MATERIAL OBEYING NORTON'S

POWER LAW

The constitutive theory discussed in the previous section requires two material
functions, F(a) and Jt) to be determined experimentally. A large variety of such functions
has been suggested for non-linear materials (see Refs [3,4J for example). Here we will treat
the Norton power law which seems to be applicable to a fairly wide class of materials.
According to this law, the strain-stress nonlinearity is represented in the form

F(a) = Ba" (28)

where Band n are material constants. Experimental data indicates that B depends strongly
on temperature, while n can be assumed to be constant at least over a certain range of
stress levels. Values for n range from 1.0-30[1]. For example, for ice, n has been determined
to lie between 1.8 and 3.5[5,7,10] while for metals this number is usually much larger; for
copper a value of 7.2 is suggested[9].

For a material obeying Norton's power creep law, the function §(S) in the
complementary power potential, eqn (13), takes the specific form

s(n+ 1)

§(S) = B(n + 1)" (29)

A similar function was used in Ref. [9] for defining the hardening process the parameters
of which are assumed to depend on the memory of maximum pre-stress. Introducing the
new parameters V1 = 1/A 1B and V2 = 1/A 2B, eqns (13) and (14) become

where

and where

·v 1 d I-n .( ) d 1 ;11Bij = --d aij} t - r r + -Uij
V1 t 0 vl

(32a)

(32b)

For reasons to be shown in the sequel, ail will be referred to as the "effective viscoelastic
stress".
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From eqns (31) and (32), the strain rate for the uniaxial (tension) case, (811 =
0"11 = 0"; ell = e) is written as

e=-EO' +.!-dd rer"(t)j(t-t)dt+.!-er"(t).
VI do v.. (33)

Equation (33) indicates that viand v.. might be looked at as some sort of "creep moduli"
for the first and second stages of creep, respectively, in some sense analogous to Young's
modulus for the elastic case.

4.1. Some creep test characteristics
The behaviour of a non-linear viscoelastic material, as defined by eqns (31) and (32),

depends on the elastic constants E and JI. as well as on the viscous parameters n, VI' V..

and the shape of the function,Jt). Consequently, tests can be designed to verify the validity
of our constitutive model against actual material behaviour. A first check can be obtained
from tests against the characteristic features of eqn (33), which for the "creep test" at
constant stress, 0"0' becomes

(34a)

from which, after integration, one obtains

where

/(t) = Ij(t)dt.

(34b)

(34c)

For various constant stress levels, the resulting strain and strain rate vs time curves
should exhibit certain characteristics as indicated on Fig. 1. Firstly, let us check Norton's
power law for the maximum (t =0) and minimum (t ..... 00) strain rates. Clearly, for these
two cases, eqn (34a), when plotted on a log-log scale, results in two straight lines with the
slope defining n. From the same plot (Fig. 1(c», VI and vz, or alternatively p and v..
(P = V..!Vl + I) can also be determined.

The function, J..t), was already normalized such that J..0) = 1.0. Furthermore, it was
assumed that J..t) °as t -+ 00. A natural extension of this last assumption is the result
/(t) -+ / <xl for t 00, suggesting that the cross-hatched area shown on Fig. I(b) is limited.

If a material obeys the constitutive law given by eqn (33), the creep curves for various
constant stress levels should exhibit certain invariant featurcs based on the following
reasoning: since

(35a)
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Fig. L Creep test characteristics of a matenal obeying Norton's power law, (a) Strain-tIme curves
for two different constant stress levels. (b) Strain rate vs time curves for two different constant

stress levels. (cl Maximum and minimum stram rate vs stress,

we obtain (see Fig. 1(a))

V2
l =- do v-'oo

1

a parameter clearly stress independent.
From eqn (34a) we obtain

(35b)

(36a)

from which one establishes a second stress-independent parameter, l1' in the form (see Fig.
l(b»

I

-dil
dl.=o

(36b)
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For ice, the stress independence of to and t 1 was confirmed experimentally[7] for low
stress levels. These parameters were also determined in Ref. [10] for high stress levels using
data given in Ref. [5]. There were significant discrepancies in these parameters as
determined from various creep curves corresponding to different stress levels, discrepancies
which may at least partially be due to difficulties in determining data from the creep curves
resulting from the fact that stresses were so high that the curves consisted only of primary
and tertiary stages.

Reversibility or irreversibility of creep strains specified by the parameters Vi and V2 ,

respectively, results immediately from eqn (33). When a constant stress, (10' is removed at
time t = t', the reversible portion, amounting to (~/V1)J'(t'), should be recovered while the
irreversible component, (~/V2)t', remains as permanent viscous strain. If the time, t', is
chosen such that the creep process is in its "steady creep" stage, measurements of the
"permanent" (eP) and "recoverable" (e') viscous strains may also be used in determining
the parameter, to, from the relation (see Fig. l(a»

(37)

5. AN APPROXIMATE METHOD FOR OBTAINING THE VISCOUS PORTION OF THE

STRAIN RATE

An examination of the expressions derived in the previous sections reveals that the
viscous portion in those expressions are similar in the sense that they consist of a Volterra
type integral part, responsible for the hereditary recoverable viscous response, and a second
portion which is a function of the current stress state and is related to the permanent
(irrecoverable) viscous strain. This similarity is also very apparent when we compare eqns
(14) and (8), expressions for the multiaxial and uniaxial case, respectively. It is thus clear
that the form of the operator is identical for the multiaxial and uniaxial case, suggesting
an identical procedure for f'ach stress component in treating this multiaxial viscous process.
This, in turn, suggests approximate treatment of this phenomenon by means of one
dimensional non-linear spring-dashpot models, the suitability of which for describing such
processes was demonstrated in Refs [10,11,14].

For a material obeying Norton's power creep law, the viscous strain rate depends on
the effective viscous stress, ii jj , as opposed to the elastic strain rate which is a function of
the actual stress rate, cTjj' Thus eqn (31) can be expressed in the form

(38)

Since (1ij for the uniaxial case becomes identical with iijj , the simple spring-dashpot models
can simulate a non-linear viscoelastic process for this case while for the multiaxial
formulation the elastic and viscous responses have to be modelled separately because in
general, (1jj ::I: iiij.

As a consequence of these considerations, the tractability of these types of problems
is greatly enhanced if a procedure for handling the "viscous strain rate-effective viscous
stress" relation is established for the one-dimensional case. Naturally, such a procedure
will have to be repeated for each non-zero (iij' In order to focus on this one-dimensional
aspect of the procedure, let us rewrite eqn (32a) in the form

(39)

where tV and (i denote a component of the tensors tlj and (ijj' respectively. Equation (39)
is identical to the analogous expression discussed in Refs [11,14].
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{f'

Fig. 2. Spring-dashpol model for simulation of viscous behaviour.

In considering the use of such simple models we note that the rate of permanent
viscous strain can be modelled "exactly" by means of a non-linear dashpot element, D2

(see Fig. 2), the internal constitutive relation of which reads

(40)

The reversible (recoverable) portion of the viscous strain rate, on the other hand, can be
simulated only approximately by means of a non-linear Kelvin body with internal
constitutive relations for its elements, Dland Sl' given in the form

(41a)

(41 b)

where

(41c)

Clearly, if at any instant of time all information concerning stress and strain is available,
i.e. the magnitudes a, eV and eP are known, one can define the viscous strain rate for the
model immediately and directly as

.v de' deP (a")" (a)"
e =-+-=--+-

dt dt V l V2

(42)

where the component (a"), being a part of a, can be determined for a known value of e'
from eqn (41b) using any standard iterative procedure (see Ref. [10J for details).

In eqns (41) and (42) model parameters VI' V2' E1 and c were introduced, the first two
of which are identical to the two viscous parameters used earlier in this paper. The new
constants c and E 1 are to be defined in terms of the material parameters to and t l' discussed
in Section 4.

We would naturally like to have our model simulate the behaviour of the material,
as described by the Cunctionj(t), as closely as possible. Consequently, the model shown in
Fig. 2 should exhibit characteristics which are similar to those indicated for the material
on Fig. 1. Let us, therefore, focus on the behaviour of the model, which obviously must
have a typical creep response consisting of primary and secondary stages and must exhibit
recovery.

In analogy with the creep test for the material, which allows determination of the
function j(t), assume the model to be subjected to a constant effective viscous stress, ao,
for which the creep rate is written as

.v, era. () erae 1I:lIo=-)mt +-
Vl V2

(43)
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whereim(t) is a characteristic function ofthe model describing the hardening process during
the primary creep stage and where the first term defines the reversible portion of the creep
rate, i'. Comparing this part with eqn (41a), the creep rate for the corresponding element,
D1 , one can write

(44a)

which when used in eqns (41b) and (41c) (for element Sl) one obtains

and

[1 - "'Um(t))]" + e[l - "'Um(t))] = (:0).. e'(t).

(44b)

(44c)

From this last result one can. by differentiation, obtain the reversible creep rate. which
when compared with its definition (see the first term in eqn (43» leads to

(45)

This equation, together with the initial condition im(O) = 1.0, defines the model function,
im(t) for any given set of model constants, VI' n, e and EI'

Before defining requirements for similarity between the model and material functions,
im(t) and 1.t), note that im(O) =1.0) = 1.0 and also im(t) - 0 and 1.t) - O. as t - 00. Thus the
two end points of the functions are identical. Let us further define these two functions to
be similar within the entire time domain if and only if

di ! diml
dt r=O = dt r=o;

and (46a.b)

Substituting eqns (36b) and (45) into eqn (46a) one arrives at

! =Ell where 0 = {l for n = 1.0
t l VI (o+e/n) 0 forn> 1.0'

(47)

Equation (46b) is used, indirectly, in the following manner. From Fig. 2 we note that

and

q"(t) -+ 0; ast - 00

ast-+oo

(48a)

(48b)

which. together with eqns (43) and (4lb) leads to
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from which we obtain
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(49)

Using eqns (47), (49) and (35b), the two additional constants, C and E1 , for the model can
be related to the material parameters, to and t 1 (for n > 1.0) by

where

E _~~_1_
1 - tin (l - A.)

(50a,b)

For n = 1, eqns (47), (49) and (35b) lead to

). = 1.0.

(5Oc)

(5Od)

Thus, clearly, for the n = 1 case (linear material), only the ratio, EI!O + c) is determinable
instead of E1 and c separately. Also, A. = 1.0 and tolt1 = v2/vl for a linear material, as can
easily be confirmed from a modified linear Burger's body, which our model reduces to for
this special case.

The parameter). has a simple physical meaning. Consider the "secant modulus" for
the element Sl' defined as

from which, using eqns (48b) and (50a) one obtains

s

A.=~s .

E11,=0

(51 )

(52)

s
Since for a linear Kelvin body, E1 = E1 = const., this relation confirms the value of i. to
be unity for a linear material. Experimental data for ice shows this material parameter to
be slightly less than 1.0; for example, test results presented in Ref. [7J give a value of
). ;;';:f 0.9 while some other data[5J allows an estimate of this variable to be approximately
0.8!.

Introducing the dimensionless time f = tit l' the expression for im(f), eqn (45), for
n > 1.0, can be written as

dim i:; 1/")

dl = - ( )
n ~ - 1 (1 - i;':")"- 1 + 1

which for n = 1 simplifies to

(53a)

dim ..
dl = -1m'

. -/
-+ 1m = e . (53b)
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j(i)

3

Fig. 3. Variation of creep function for reversible creep with time.

- t,=-
"

Figure 3 shows curves for jm(t) vs tfor n = 1, 1.8, and 3, the values being obtained from a
numerical solution of eqn (53a). For comparison purposes a curve based on an expression

j(t) = (1 + ~.5t)2 (54)

is also shown on the same figure, an expression which is suggested in Ref. [7] on the basis
of experimental data for ice, with a value of n = 1.8. As can be seen from Fig. 3 the two
curves for n = 1.8, one being experimental and the other being determined theoretically
for the model, are practically identical over the entire time domain confirming the validity
of our assumed "similarity" conditions.

6. EQUATIONS OF A VISCOELASTIC PLATE THEORY

Consider a plate element of thickness h subjected to stress and moment resultants,
N/Jp and M/Jp defined by

(55)

where cr.p denote components of the assumed plane stress state, at a distance Z from the
midsurface. The stress-rate tensor for this plane stress state is given by eqns (20), using the
corresponding stress and strain-rate components for the parallel surface.

Using the Kirchhoff-Love hypothesis for thin plates, which implies that
B;, =B., + ZK." where B«p and K., denote midsurface (in-plane) strains and curvature
changes, respectively, one obtains the stress-resultant-rate-strain-rate expressions in the
form

where

(56a)

(S6b)

1f"/2 .
t/J;p = h f;pdz;

-11/2
(S6c)
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and where i;., are defined by expressions analogous to eqns (20b) and (20<:).
Depending on various assumptions one can make there are a number of different

versions for the governing equations for such thin plates. We shall discuss here one possible
version by assuming:

(a) motions of the plate elements to be such that all inertia effects are negligible;
(b) external loads cause in-plane stress resultants; the effects ofwhich on the equilibrium

of the deflected plate in tbe surface normal direction are significant and, consequently, the
equations of equilibrium take the form

(57a)

(57b)

where q", q,., denote surface loads per unit midsurface area;
(e) deflections to be small so as to allow the strain-displacemerit relations to be written

as

(58a,b)

where u.. and w denote midsurface diaplacement components.

Substituting relations (58) into eqns (56) and using the result in eqns (57) one arrives
at

Eh [(1 + p) . (1 -p) . .1,' ] . 01 _ p2 -2- u..,,,p + -2- up."" - 'I'''/i.,. + qp =

D[ , .h" J . N Eh [(1 -p)(. .)
w.all"ll + 'I'''Il.''P - w,all "p - w'''P' 1 _ p2 -2- u"./i + up,,.

(59a)

These equations are linear in the displacement rates, U", W. However, their solution requires
knowledge of the current stress and stress history so as to allow determination of the
functions t/J;p and ",~;. In addition, the current membrane stress resultants and curvature
changes bave to be known which demands some sort of iterative technique for the solution.

Equations (59) simplify considerably if one can assume the stress resultants and in
plane loads to be temporally invariant, Le. tiI"p = qp = O. For this case eqns (59a) vanish
identically, while the third equation becomes

(60)

where N~p denote the time-independent membrane stress resultants. The in-plane midsurface
displacement rate components, UA , are found from the relations

N' 0 (l-P)<.. ) . ~ I_ p2.1"
«P =: ..... -2- u«,/l + up." + IlUy,yQ«/l = ~'I'''P' (61)



On a multiaxial non-linear hereditary constitutive law for non-ageing materials with fading memory 321

L-
Y

--

x

b

Fig. 4. Discretization of plate.

Section C-C

z

For the case of pure bending of plates, for which at t = 0 all membrane forces are zero,
the coupling effects of the above viscoelastic plate theory still persist in the sense that even
under such action there will develop, in time, midsurface in-plane displacement components.

7. CYLINDRICAL BENDING OF AN ICE PLATE

To demonstrate the effectiveness of the theory/method introduced, we treat the
cylindrical bending of an imperfect long ice plate with initial displacement wo(x) and
subjected to uniform in-plane compressive loads, Nxx = - No applied along the longitudinal
boundaries (see Fig. 4). This apparently simple case contains all characteristic features to
be encountered in any viscoelastic plate problem, namely: (i) despite constant external
loading, stress magnitudes vary significantly spatially and temporally; (ii) due to the non
linear constitutive law, the initial uniaxial stress state becomes two-dimensional in the
course of viscous effects necessitating a two-dimensional approach throughout. The
governing equation for the normal displacement, w, eqn (60) simplifies further to the form

d4w d2w d21/1"
D dx4 + No dx2 = -D dx:".

The membrane stress resultants have to satisfy the following conditions

(62)

fN"dX=O (63a,b)

(64a,b)

where b denotes the plate width and where the second of these conditions shows that the
plate is free to expand in the longitudinal (y) direction.

Due to "cylindrical bending", e" is independent of x. Using eqns (56), one obtains the
following relations for the determination of the in-plane strain rate components

e" + ~fe""dx = ~f I/I;,dx.

Having determined e"" and e" (clearly ex, = 0 due to symmetry), one can find N" using
eqn (56). Finally u" = uand u, = Ii can be established from eqns (58).

Note that for t = 0, 1/1;, = 0 and the elastic response can be treated as a uniaxial one.
However, for t > 0, 1/1;, :F 0 one must take into account the two-dimensional stress state
and the coupling effect inherent in eqns (62) and (64).

The form of all equations derived suggests an incremental procedure in which
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calculations are performed in temporal steps !!I.e = !!I.t/c p , where cp = vdu"o, (Jo = No/h. Such
"average stress"-dependent scaling of the time proved to be very convenient in numerical
calculations for the uniaxial case[lO] since it permits automatic "extension" or "shrinkage"
of the real time steps, !!I.t, in terms of the viscous properties of the material and the average
loading on the plate.

Spatially the plate is divided into M and N sectors along the x (width) and z (thickness)
directions, respectively (see Fig. 4). Magnitudes of all required functions are calculated for
each nodal point with coordinates Xi and Zj' Integration through the thickness is performed
using Simpson's rule. In the numerical analysis the following procedure was used.

(1) At each nodal point the value of the total stress, total strain and the recoverable
(reversible) and permanent (irreversible) strain are taken from the previous time step and
stored. For t = 0 the elastic solution is taken.

(2) Using the equations presented, the rates for displacements, strains and stresses, at
this time, are determined at every nodal point.

(3) Assuming some time interval, !!I.e, the increments for all variables during this time
interval are calculated.

(4) The state of deformation and stress, for the time (t + !!I.t) is determined at every
node point of the plate by adding the increments to the previous values.

(5) Steps (1)-(4) are repeated.

This general procedure is discussed in detail in Ref. [16].
Calculations were performed for an ice plate using viscoelastic material properties

taken from Ref. [7] and used also in Ref. [14] in the analysis of an imperfect ice column.
The tests reported in Ref. [7] were carried out under relatively low stress levels so as to
permit the development of a well-defined steady creep stage.

For a temperature of - 5°C, the following material properties were used:

E =4.25 GPa; Jl = 0.33
n = 1.8; VI = 2.159 x 1013 (Pa)"h; V2 = 1.079 x 101S (Pa)"h
to = lOOh; t 1 = 1.0h.

The geometry of the plate was assumed to be

h = 3.5cm; b = 100cm

with an initial (imperfection) displacement 0.01 mm ~ Wo ~ 10mm. The plate is subjected
to a uniform in-plane "membrane" force, No =8750Nm- 1 resulting in an average
membrane stress (Jo = 0.25 MPa, which is low enough to result in a well-defined steady
creep stage. This stress level, 0'0' also leads to a value tp = 4.149 X 103 h. The plate is
divided into 10 sectors in the x- and z-directions, respectively, thus creating 100 nodal
points for every one of which the above described numerical procedure must be carried
out. As an output of such calculations, the complete stress, strain and deflection histories
for each node point are obtained.

Figure 5(a) shows the time-deflection behaviour at the centre of the plate (line along
the midspan) for various initial imperfection magnitudes. As was the case for the imperfect
column, the deflections increase monotonically in time with the rate accelerating as the
deflection magnitude approaches a value approximately equal to the plate thickness. For
comparison purposes, the time-deflection behaviour of an ice column subjected to the
same compressive stresses and initial imperfections and taken from Ref. [11] is also shown
on the figure. As is to be expected, the plate is slightly stiffer than the corresponding
column, leading to increasing discrepancies in the time-deflection behaviour of the two
structures as time passes.

The stress distribution in the plate for t =:: 0.056 (t =:: 9.7 days) is shown in Fig. 5(b)
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Fig. 5. Viscous behaviour of imperfect ice plate undergoing cylindrical bending. (a) Time-deflection
behaviour. (b) Stress resultant and stress distribution for f =0.056 (wo = 1mm. WB = h).

when the total mid-span deflection, WB, has grown to WB = h = 3.5 em. Note that by this
time the "coupling effect" in the equations has resulted in some (nonzero) Ny, and that the
stress variation across the plate thickness has become quite nonlinear.

8. CONCLUSIONS

The existence of a complementary power potential is postulated, which allows
definition of a hereditary multiaxial constitutive law for non-ageing materials with fading
memory. The general equations reduce to the corresponding multiaxiallinear constitutive
law for hereditary materials involving Volterra type integrals[I,15], equations which are
used to describe the time-dependent behaviour of non-metallic materials such as plastics.
The general equations derived also reduce to the linear and non-linear uniaxial constitutive
relations which have been proposed and used by many authors[I,13]_

The theory and results derived here are particularized for a material obeying Norton's
power creep law. The resulting equations, when reduced to the one-dimensional case, again
are in agreement with corresponding equations introduced and used by others heretofore[1
4]. What is also significant in the present theory is that the non-linear time-dependent
material behaviour is specified by means of two elastic and five viscous material parameters
which have clearly definable physical meaning facilitating their experimental determination.
The difficulties associated with evaluating the complex derivatives of the Volterra type
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integrals in such constitutive relations are overcome by introducing an approximate
procedure which involves the use of simple arrangements of non-linear spring-dashpot
elements.

The constitutive theory derived was used to analyse the time-deflection behaviour of
a long imperfect ice plate. The results from this analysis show great similarity with
corresponding results for an imperfect ice column, discussed in Ref. [11]. As one would
expect, the ice plate, due to the two-dimensionality of the problem, exhibits slightly larger
stiffness as compared to the ice column.

Throughout the paper small strain approximation was used and the level of stress
was restricted to be below the yield stress of the material. The theory developed here treats
only the first two stages of creep and does not simulate the strain softening phenomenon
exhibited by various materials at high stress levels and large strains. Despite this limitation,
the constitutive model and associated solution technique presented here seems to provide
an improved and effective tool for the analysis of viscoelastic structures, including hereditary
effects.
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